Uncategorized

Distilled News

Data Analytics & R

Putting the science back in data science

One of key tenets of science (physics, chemistry, etc.), or at least the theoretical ideal of science, is reproducibility. Truly “scientific” results should not be accepted by the community unless they can be clearly reproduced and have undergone a peer review process. Of course, things get messy in practice for both academic scientists and data scientists, and many workflows employed by data scientists are far from reproducible.

Support Vector Machines Simplified using R

This tutorial describes theory and practical application of Support Vector Machines (SVM) with R code. It’s a popular supervised learning algorithm (i.e. classify or predict target variable). It works both for classification and regression problems. It’s one of the sought-after machine learning algorithm that is widely used in data science competitions.

Comprehensive Guide on t-SNE algorithm with implementation in R & Python

Imagine you get a dataset with hundreds of…

View original post 801 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s